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Interaction in colloidal systems: Buckling and melting
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The explicit form of the colloidal particle interaction has been calculated in restricted colloidal sys-
tems. Based upon the exact interaction, effects of buckling of the monolayer of colloidal particles in the
middle of the electrolyte film is considered and the melting condition of colloidal crystals is found.
Thermal fluctuations of inner degrees of freedom of the edge dislocation are shown to affect the condi-

tion of the dislocation-mediated melting.

PACS number(s): 82.70.Dd, 05.40.+j

I. INTRODUCTION

One important question of the physics of colloidal sys-
tems refer§ to the determination of the effective interac-
tion potential between colloidal particles [1]. In particu-
lar, the electrostatic interaction between highly charged
particles in solution has been the subject of long-standing
interest [2,3]. These interactions determine the static
structural and dynamical properties of a colloidal liquid
[4], crystallization of a colloidal liquid [5], and other phe-
nomena.

Through dissociation, a colloidal particle acquires
from the electrostatic surround the electric charge
g =Ne, and in the three-dimensional bulk electrolyte the
interparticle interaction can be well described by the
screened Coulomb potential (g2 /7 )exp(—r/Aq) (Yukawa
potential), where A, is the Debye-Hiickel radius. Under
some circumstances, in experiment, the electrolyte bath is
geometrically restricted, and charged colloidal particles
interact partly through the outside region, which can be
dielectric or vacuum. This can drastically change the
Yukawa interaction potential. In this situation, the in-
teraction potential for particles on the electrolyte surface
has been written in an implicit way through the integral
of the Bessel function [6]. In this paper, which uses
methods of analytical functions, the explicit formulas for
the interaction of colloidal particles have been found.
The only restriction is the consideration of particles as
pointlike objects (particle size smaller than the interparti-
cle distance) and the linearized Poisson-Boltzmann equa-
tion (temperature higher than the interaction potential).
Although quantitatively the resulting expression for the
pair potential may only be exact at interparticle separa-
tions much larger than the particles diameter, for most of
the thermodynamics and structural properties of interest
this is the most relevant part of the repulsive electrostatic
interaction. In fact, as is well known in the bulk three-
dimensional case, the simple Yukawa functional form
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above provides a very accurate representation of the pair
interaction [4]. Furthermore, more detailed derivations
[3], in which the restrictions above (i.e., pointlike ions
and the linearized Poisson-Boltzmann equation, etc.) are
relaxed, lead essentially to the same functional form of
the pair potential, differing only in the detailed definition
of the amplitude of the Yukawa potential, which in many
applications is treated as a fitting parameter associated
with the effective macroparticle charge.

Melting of colloidal crystals has been observed experi-
mentally [S]. In Refs. [S(a) and 5(b)] a loose translational
and orientational order for suspensions of colloidal parti-
cles has been observed. Earlier work (Ref. [5(c)]) report-
ed the existence of the crystalline and the disordered
structures in the colloidal system on the water-air inter-
face. A detailed picture of dislocation-mediated transi-
tions in an analogous system is presented in Ref. [5(d)].
In our paper we study precisely the dependence of the
condition for colloidal system melting (loose for a
quasi—long-range translational order) on particle density,
particle charge, and the Debye screening length, taking
into account nontopological fluctuations. To observe the
contribution of these fluctuations, further detailed mea-
surements are required. One possible way to do this is to
observe experimentally the melting condition for different
particle concentrations and the chemical composition of
the colloidal liquid, which influence directly the Debye
length.

In Sec. II the systematic calculation of the particle in-
teraction is given. We consider particles on an interface
between vacuum and an electrolyte, particles in a thin
film of electrolyte, and particles in the middle of a thick
film of electrolyte.

In Sec. IIT the buckling of the particle monolayer in
the middle of a film is considered. This effect has been
calculated and experimentally observed in the systems of
vortices in a type 2 superconductor [7]. In a colloidal
system buckling has been considered in Ref. [8] for the
Yukawa model particle interaction.

In Sec. IV the melting of a colloidal crystal is con-
sidered based upon the derived particle interaction. The
phase diagram of dislocation-mediated melting [9-13]
can provide information on particle interaction. See also
[14].
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In Sec. V the effect of inner degrees of freedom of a 1
dislocation on the melting condition is considered. The
conventional condition of dislocation-mediated melting
treats a dislocation as a ““black box,” considering only its Su
translational degrees of freedom. As shown in Sec. V,
thermal fluctuations of inner degrees of freedom of this
black box can essentially change the melting condition.

II. INTERPARTICLE BETWEEN COLLOIDAL -d

PARTICLES FIG. 1. The electrolyte fills in the space |z| <d. |z|=u is the

We will consider a system of colloidal particles in the  Position of a particle.

electrolyte medium. Each particle can be treated as a
charged sphere of charge ¢ =Ne, where N can be of the
order of 100. The radius of the colloidal particles is con-
sidered to be small compared to the interparticle dis-
tance. This enables us to consider a colloidal particle as a
point charge, omitting effects of the charge distribution

vacuum, or some other dielectric medium, is supposed to
fill the remaining space |z| > d.

The electrostatic potential satisfies the linearized
Poisson-Boltzmann equation [15]

over the particle surface. @, . .

Let us calculate the electrostatic potential @, (¥,z), Ve, A2 O(d?—2?)=4mgd(F)d(z —u) . 2.1)
produced at a pomt (7,z), with F=x7 + y], by the charged 0
particle placed in the electrolyte at the point 7=0, z=u The solution can easily be found by using the Fourier
(Fig. 1). The electrolyte fills the space between two paral- transformation and matching solutions at boundaries.

lel plates located at z==d. Outside the electrolyte, a The result for |z| <d is

ei?-? k
@, (7, z)—21rqf o )2 Ry exp(—|z—ulky)+ [1—7{— exp(—dk,)

0

cosh(uk)cosh(zk)
sinh(dk,)+(k /ky)cosh(dk,)

" sinh(uk)sinh(zk)
cosh(dky)+(k /ky)sinh(dk)

] ) (2.2)

where k =/ k>4 Ay % Let us consider some particular cases according to geometrical constrictions of specific experi-
ments.

(i) Colloidal particles on the vacuum-electrolyte interface. In this case one can put z=u =d and d = « in Eq. (2.2) in
order to obtain the interaction potential of two particles on the surface between the half-space of the vacuum and the
half-space of the electrolyte. The interaction potential V(7¥)=lim,_, ,q¢@,(7,z) is

N
ik-—r’

2 ) (2.3)
f (217)2 k+v k24152

Let us make the angular integration. This gives

(r)__zq _L__ 0(kr)=q
O k+v ki 4+Ay2

ik

SV A VKD . 24)

Deforming the k, contour from the real axis to the complex plane, one can obtain

2q )\-o ) ik, y © —ik x| /753 © —ik x| ST ==
Vir)= 7 dk,e™ [flkyidkxe Vid=ig— [ die "V id—k =2 2.5)

where k’=\/ k}+Aq % Integrals over k, give modified Bessel functions [16]

Vir)= [f dk, cos(k y)[kyKl(kylxI)—\/kyz+k(,_2K1(lxl\/k),2+k()_2)]]. (2.6)
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According to general formulas of Bessel function in-
tegrals [16], the integrals over k, can be calculated exact-
ly. The results is

2g%A3 _,
qso [l— {1+—L]e /AO]
r Ao

2

ir_, r<<;\.0

Vir)=

2.7)

~ | 2973

r3

5 }\.0<<r .

As follows from Eq. (2.7), with a long distance the in-
teraction potential decreases as 1/r3, which is faster than
in the pure vacuum 1nteract10n (17 r) but slower than in
the pure electrolyte [(1/7)e °]

(ii) Colloidal particles in a thin film of the electrolyte.
This case corresponds to small d in Eq. (2.2). Putting
also z=wu =0 and taking into account that for a thin film
the wave vector scales as k ~d /A3 and hence kAy<<1,
one can obtain from Eq. (2.2)

K7
V(r)-—27rq2f 3 ¢
(21T) k P d
2A3
=q2f0°°—kdkTJo(kr) . (2.8)
k+—

202

Using formulas for Bessel function integrals [16], one can
transform Eq. (2.8) into the following:

Vir)= Eli‘j. i}i — rd_ rd
4)»(2J rd ZX% 27»(2)
2M3 2xo A3
——+In , r<<—
q%d rd rd d
~4= R 5 (2.9)
215 2A5 A§
—_— — < .
rd |7 d <r

Here H(z) is the Struve function and Ny(z) is the Neu-
man function.

(iii) Colloidal particles in the center of the electrolyte
film. In this case one should put ¥« =z =0 into Eq. (2.2).
Let us consider an important case of a thick film when
Ap<<d. Then the interaction potential of two particles,
placed in the middle of such a film, is
1

R 2
Xy +2A° exp(

V(r)=21rq2f (‘21 1;2 —deo)

2k24+2A52
% T2k
0

(2.10)
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The first term in the right-hand side results in the con-
ventional bulk interaction2 (g%/r)e °. The second
term is proportional to e ~r/49% and kAy<<1. To calcu-
late this, one has to expand the exponent
2dky=2d /Ay+k?Ayd and omit kA, in other places. The

third term in Eq. (2.10) can be written in the form, at
Vidiy<<r,

2 2)\.2 — © i ® —m
q Oe 2d/kof dk e ky}’fik |dk kz_kz

T

which gives the 3 part of the interaction potential.
Collecting all three contributions in Eq. (2.10), one can
obtain

2g2\3

3

V(r)=-q—ie_r/}”°+ _q__z_e—rz/4xod+ o 2%
r d '

(2.11)

The third term in Eq. (2.11) is valid at v/ dAy<<r.
Compared with previous cases, the » 7> asymptotics is ex-
ponentially small since only a small fraction of the
effective field penetrates the region outside the film. The
first term in Eq. (11) is the conventional Yukawa poten-
tial. This is the main contribution to V(r) for the
sufficiently short distance (see also Ref. [17]). If 7 is
larger or approximately equal to 2d, the interaction be-
comes the r ~3 type.

III. BUCKLING OF A COLLOIDAL CRYSTAL
IN THE MIDDLE OF THE FILM

The most preferable position of a colloidal particle in
the film is the middle. In this case the electrostatic ener-
gy E?/8m has its minimal value since the electric field in
the film is better screened than in the vacuum. When the
density of the colloidal particles is increased, they will
collect in the middle plane of the flat film as soon as the
concentration is less than some critical value. At bigger
concentrations the effect of the interparticle repulsion be-
comes stronger than the repulsion between a particle and
the film boundary. This results in the buckling of the
particle system: one-half of the particles shifts up from
the middle and the rest shifts down. This effect has been
considered for vortices in a superconducting film [7]. See
also [18]. Buckling of a crystal layer of colloidal particles
was considered in Ref. [8]. The similar effect for the col-
loidal liquid is reported in Ref. [19].

In this section we consider the buckling of a crystal
layer in the middle of the film of thickness 2d >>A,. Un-
der this condition, as follows from Eq. (2.2), the electro-
static potential of the particle, shifted by the distance u
from the middle of the film, is

P, (r z)= q —R /A,

+-(ql—e

exp

_Zd/}""cosh [ u ;—z
0

4dhry |’

3.1)
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with R?=r%+22 and r?=x2+y2. This formula is just a
generalization of Eq. (2.11) for finite ¥ and z. We omit-
ted the third term in Eq. (2.11).

Buckling of a hexagonal colloidal layer in the middle of
the film can occur as shown in Fig. 2. The open (full) cir-
cle corresponds to a particle shifted up (down). The sur-
face energy density E can be written in the form

E=pf/—§§ 49, (Fsz,) 5 (3.2)
where 52V/3 /2 is the unit cell area, 7, is the vector of the
hexagonal lattice, and z, =xwu. The summation in Eq.
(3.2) is extended over all particles, including 7, =0. We
have to extract only the u-dependent part 8E of the ener-
gy density in Eq. (3.2). The first term of Eq. (3.1) contrib-
utes to 8E if 7, connects open and full circles in Fig. 2(a).
Since the interparticle distance under consideration b is
bigger than the Debye-Hiickel radius A, one can consid-
er only four nearest neighbors (full circles) of the central
open circle in Fig. 2(a), i.e., |7,|=b.

The second term in Eq. (3.1) is important only for the
self-energy when 7, =0 and z=wu. Writing R, =~b
+2u?/b and expanding the first term in Eq. (3.1) up to
u?, one can obtain the u-dependent part of the surface en-
ergy density

2q 2
b3

8u? —bsa, 2 —2d/A, .
0 Z¢ %inh?

_ e u
Aob? d

SE = g

(3.3)

We chose the condition 8E(u =0)=0. The buckling
amplitude u has to be found out by the minimization of
Eq. (3.3) with respect to u. The result is (Fig. 3)

ﬁ’—sinh 2u |_ 4hd L 24D/
2u }\'O b2 ’
b 172
[3)»0 id—; , d—— <<y
u= (3.4)
b
d > b~d .

The interparticle distance b is expressed through the
surface density of particles n as n=2/b>V3. We see

b)

Ot — |- — — —

-d

FIG. 2. (a) Buckling scheme of the colloidal crystal mono-
layer in the middle of the film; (b) motion of colloidal particles.
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2d b

FIG. 3. Buckling amplitude as function of the interparticle
distance b. At (2d —b)~b (dashed line) the particle distribu-
tion becomes more complicated than a simple buckling.

that the critical concentration n, for buckling is n,
=1/2d*V3. For the bigger concentration (smaller b)
the buckling amplitude u increases and distortions of oth-
er types (tripleting and so on) start to be involved in the
formation of the three-dimensional colloidal crystal. For
this reason, the high concentration part in Fig. 3 is shown
by the dashed line. In this region the parameter u has
rather the meaning of the domain size in z direction filled
by the colloidal crystal.

IV. CRYSTALLIZATION OF A TWO-DIMENSIONAL
COLLOIDAL LIQUID

The two-dimensional systems can be realized, for ex-
ample, by colloidal particles on the interface between
dielectric and electrolyte or in the middle of an electro-
lyte film. The crystallization condition of a two-
dimensional liquid is easily formulated as the melting of a
crystal phase. The two-dimensional crystal can be de-
scribed in terms of elasticity theory. The elastic energy
has the form [20]

E,=1 [ d*Quu} +iu}) 4.1)
where u;; =1[0u, /dr, +0u, /9r,;] is the strain tensor and
u and A are Lame coefficients. According to Berezinskii
[9] and Kosterlitz and Thouless [10], melting of the two-
dimensional crystal occurs via the spontaneous thermal
creation of edge dislocations. The condition for this can
be written as F=0. The free energy F is given by [10]

F=E-TS,, 4.2)
where

a | R
P Yl W Yl

is the mean-field elastic energy of the edge dislocation,
S, =In(R?2/b?) is the translational entropy of the dislo-
cation, R is the system size, and b is the interparticle dis-
tance. The crystallization (melting) condition is

b2 Atp
To=A— R

o At AT
were the coefficient 4 ~0.65 takes into account the

screening effect of dislocations at the transition point
[21].

(4.3)
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Lame coefficients can be expressed through the shear
modulus cg and the compression one ¢;; as p=cg and
A+2u=c,;;. We take the modulus notation that is ap-
propriate for a hexagonal lattice. If the interparticle in-
teraction can be described by the isotropic pair potential
V(r), elastic moduli have the form [22]

c66=%§ [rIZV"(rI)+3r1V'(r,)] N

(4.4)
e =1l6§ Brev"(r)+rV'(r)] ,

where 7 is the two-dimensional particle density and sum-
mation goes over all crystal sites.

Let us consider first the melting condition for the two-
dimensional colloidal crystal in the middle of a film stud-
ied in Sec. III. One can take only the first term in Eq.
(2.11) as an interaction potential V(r)=(g%/r)e "o,
Substituting this potential into formulas (4.4) and taking
into account only six nearest neighbors one can obtain for
Lame coefficients

V3 q2 -bn,
=A=——-21—¢ o, 4.5)
# 4 22
The crystallization condition (4.3) gives
A g’ —b/
Ty= e o, (4.6)
° 8rVv3 A3

For applicability of the Debye-Hiickle approximation
[linear equation (2.1) for the electrostatic potential] the
inequality V(b)< T should hold. By means of Eq. (4.6),
this condition can be written in the form

Ao

b

ZTO

V(b) _ 8mV'3 . <1

T A

4.7

In our case, Ay <<b, and we can consider a temperature
that is much less than the melting temperature T,.

One has to mention here that consideration of the
buckling within the mean-field approximation, supposed
thermal fluctuations to be small. The amplitude Su of
thermal fluctuation can be found from the condition

(8u)® @?

bH73
> ay? SE

2

=T, (4.8)

where 8F is the surface energy density determined by Eq.
(3.3). Using the formula (3.4) for the mean-field displace-
ment u and the expression for the melting temperature
(4.6), one can obtain from Eq. (4.8)

2 Ao
2u

3 2

~ I _ 4
T() 477‘/3

b
Ao

Su 1

u

2u
0

coth

2u
—-— -1
A

0

<1. 4.9)

This value should be small for the applicability of the
mean-field results. One can see that, for thick films,
Ao <d, one can satisfy simultaneously three conditions:
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(i) T<T, (the existence of a two-dimensional colloidal
crystal in the middle of the film), (ii) inequality (4.7) (the
applicability of the Debye-Hiickel approximation), and
(iii) inequality (4.9) (the validity of the mean-field approx-
imation for the buckling problem).

Let us consider now the crystallization of the colloidal
liquid on the surface of the electrolyte A in Sec. II). One
can distinguish two important limiting cases:

(i) nAd<<1. The distance between particles b
=(2/nV3)172 is high compared with the Debye-Hiickel
radius A, In this case the interaction potential is
V =2q%\%/r3, and according to Egs. (4.4),

2
p=3iA=27V3c, i—g(nké)sﬂ

3578 5 3 (4.10)
212 <, |,
(ii) 1<<n}»(2). In this case V=q2/r and
p=21V"3c,q*n3"?,
2292 Ao
A=4mn“q ko~—b—p,>>/.L , 4.11)
e L [ympdr_ 1 g1
2 322 ro Vi Zon

¢, and c, are numerical constants and 7, is the vector of
the hexagonal lattice. The constant ¢, is expressed
through the convergent difference of the integration over
all space and the lattice sum.

The melting temperature, defined by Eq. (4.3), satisfies
the relations

Ac,(nA3)*?, nAd<<1

Tory
T ey (nAd)?, 1<<nAd .

q2

This dependence is shown schematically in Fig. 4. It
should be noticed that the experimental dependence
To(n) in the limit of a small concentration can provide
the information on the interaction potential. According
to Egs. (4.6) and (4.12), one can write the relations as

B ) 172
nA3v3

/2

(4.12)

r/Ay

[V(r)~e_ , To~exp

(4.13)

V(r)~—=, To~n"
r

So, the crystallization phase diagram supplements other

%

LIQUID

-1 nf

FIG. 4. Phase diagram of a two-dimensional colloidal system
on the interface between vacuum and electrolyte. The solid line
corresponds to the dislocation-mediated melting of a crystal to
the hexatic liquid.
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experimental methods of the investigation of the interac-
tion between colloidal particles.

The charge of a colloidal particle is ¢ =Ne, where e is
the electron charge and N is a big number, N ~10%. At
room temperature

Toho  Aglum)

N
The screening radius Ay is an experimentally controlled
parameter that, in principle, enables us to sweep the melt-
ing curve (Fig. 4).

In the limit of low concentration, nk(z) << 1, the interac-
tion energy between two particles on the surface of the
electrolyte V(b)~T,; thus, considering the crystalliza-
tion of a colloidal liquid, we are at the border of the ap-
plicability of the Debye-Hiickel approximation. For high
concentration 1<<nA2} screening effects on the Lame
coefficient, u are not important and Eq. (2.1) holds.

The melting of a colloidal crystal, considered in this
section, corresponds to the loss of translational order.
The crystal goes over into the hexatic state, where the
orientational order is conserved [11-13].

(4.14)

V. EFFECT OF THERMAL FLUCTUATIONS
ON DISLOCATION-MEDIATED MELTING

In this section we consider the melting of two-
dimensional crystals with exponential interparticle in-
teraction V(r)~exp(—r/Ay). The interparticle distance
b is supposed to be larger than A,. As one can see from
Eq. (4.7), at the melting temperature T,, V(b)/T,
~(Ag/b)*<<1. This implies strong thermal fluctuations
since the temperature is higher that the energy scale of
the problem. In this case the approach, based upon the
free energy of the edge dislocation (4.2), breaks down.
The first term E in the free energy (4.2), which is the
mean-field energy of the dislocation, should be modified
to account for thermal fluctuations of particles in the
field of the edge dislocation. The modified free energy
has the form

F=E—TS,,—TS, , (5.1)

where the translational entropy S|, is due to translational
degrees of freedom of the dislocation and has the same
form as in Eq. (4.2). S;, accounts for inner degrees of
freedom of the dislocation.

The analogous situation has been considered for anoth-
er topological object: the vortex in a type 2 superconduc-
tor, where fluctuations of inner degrees of freedom play
an important role [23]. Some consideration of inner fluc-
tuations for an edge dislocation has been given in Ref.
[13]. In this section we present the exact calculation of
Sin up to zeroth order in T /V(b).

The edge dislocation is described by the lattice dis-
placement [20]

rctan— + ———‘u—

Ux A+2u x2+y

27

2+ 2+,___H‘_
Y A+2u x2+y

At+2u

] (5.2)
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Then, as shown in the Appendix, the free energy of the
edge dislocation has the form

o R+ T b YAt LR
277 x+2 20V'3 | 3%, A+2u b
—TS, , (5.3)

where the translational entropy S, has the same form as

in Eq. (4.2) and Lame coefficients are
V3

3y .

5.4
415 G4

u = K =
The interaction potential between particles is supposed
to-be V(r)~exp(—r/Ay). So, the entropy of the edge
dislocation due to fluctuations of inner degrees of free-
dom can be obtained by comparing Egs. (5.1) and (5.3):

__2 | b A
Su=""775 |oac | 1@ (5.5)

The negative sign of S;, is not in contradiction with
thermodynamics, since S}, is just the difference between
the positive entropy of the lattice with the dislocation
and the positive entropy of the same lattice without the
dislocation. S;, is negative, since the lattice, distorted by
the edge dislocation, becomes stiffer with respect to the
small oscillation of particles, and as a consequence, the
lattice becomes less fluctuating, which decreases the inner
entropy.

The free energy of the edge dislocation is

1 R R?
ln?—Tln—bT

43

b
0

F=

(5.6)

8
Vib)+ 81T

The first term in brackets just corresponds to the mean-
field energy E in Eq. (5.2). The second term in brackets is
due to the inner entropy Si, in Eq. (5.1). Equation (5.6) is
valid until V(b)>>&T. One can see from Eq. (5.6) that
the melting COndlthl’l is given by the conventional formu-
la (4.3) as soon as the particle concentration satisfies the
condition

ni3>

~ 5.
2431 57

So, the numerical coefficient £ in Eq. (5.6) essentially
reduces the importance of fluctuations. Nevertheless, for
particle concentrations lower than that given by Eq. (5.7),
one has to take into account all orders of the parameter
T/V(b) in the inner entropy S;,. This means that the
system of particles with low concentration cannot be de-
scribed in terms of the mean-field approach.
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APPENDIX

We derive here Eq. (5.3), where the second term accounts for the fluctuations of inner degrees of freedom of the edge
dislocation. The lattice energy has the form [22]

E=LS V[F,—F +, —il, +84(F, +ii,)—8U(Fy +iip)|— L 3 V(F, —F, +1, —id,) - (A1)
nm nm

Here 7, is the vector of the lattice site, %, is the dislocation field, and 6%, is a small lattice distortion. Making an ex-

pansion up to second order in du and u and going over to the Fourier representation, one can obtain expression
&=¢6(1), where

_ d2q PN . - d%k . B .
6n=1 [ 1555 |Gy @Bu,(@8u;(~q)+v [ 8@ K )bu;(@ou,(—g k) | . A2
The integration is taken over the Brillouin zone; the Green function is
Gy (@) =ci4i;+ceslq 78— 919)) (A3)
and
( E) (q+k) dere—xkr qu( ), "
4 1 3u?kF) d
=z — —— s_ Y rpe5
Tz] (F)=30(x )8()’) ox "%OSg"l ny a fu b2\/3 ar’ < r, ar’{‘ flj (7,)
1 9ukF) 3u'(F)
’ ’ A5
2b2‘/§ ar r ,.2 ka ] fl] (r ( )
FPG ) =rErid®riarivir,) . (A6)

The first term in Eq. (A5) corresponds to the topological property of the displacement #(7), namely, an increase of
u, +b after circulating around the singularity. The other two terms in Eq. (A5) are the same as for a nontopological
(small) displacement.

The fluctuational part of the free energy (non—mean-field part) depends on g;;, and the total free energy (we omit here
the translational part) can be written in the form

_ Ev)

F(v)=F(0)+F1(v)=U—T1nfD Su exp T

(A7)

U is the mean-field energy of the lattice with the dislocation and F,(v)= —TS,, is the part of the total free energy cor-
responding to fluctuations of inner degrees of freedom of the dislocation.
The path integration in Eq. (A7) is taken over Su. Differentiation of Eq. (A7) gives

av fDSu exp[—&6(v)/T]

2 2 —
x [ Dou |1 [ -4 A o G K)ou,(@)5u,(—g—F)

Qr )2 (2 )2g1_] exp[—é’(v)/T] . (A8)

The right-hand side of Eq. (7.8) can be written by means of Green’s functions

v) ~
=1 | 1k =014,6,6,@)

vl _d’q d’k P Pd S P .
T2 ) (27T)2T5q(k)‘1pqp f (q)T]’,ll( k)G+k), (§+k),Gy(G+k) . (A9)

The mean-squared displacement of the fluctuating field du is expressed through Green’s function

(8u;(§)du;(g,)) =T(2m)*8(¢G+¢,)G;(q) . (A10)

Using the formula F,(1)= [}dv[dF,(v)]/3v and Eqgs. (A9), (A5), (A6), (A2), one discovers that F(1) is equal to the
second term in Eq. (5.3).
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